

DXG2MH50A-50N

RF Power GaN Transistor

1. Product profile

1.1 General description

DXG2MH50A-50N is a 50 W RF GaN HEMT Transistor with second generation RF GaN technology from Dynax, which is ideal for cellular base station applications at frequencies from 4700 MHz to 5000 MHz.

Freq	P _{sat} ²	Pavg ³	η _D ³	G _P ³	ACPR ³
(MHz)	(dBm)	(dBm)	(%)	(dB)	(dBc)
4700	47.0	39.0	41.0	27.9	-34.0
4800	47.1	39.0	40.8	28.3	-36.0
4900	47.1	39.0	40.5	28.3	-36.0
5000	47.0	39.0	40.3	28.3	-36.0

Table 1. Typical performance 1

¹ Typical Doherty performance in Dynax Demo with the device soldered onto the heatsink, test condition: V_{DS} = 48 V, IDQ Driver = 25 mA, IDQ Carrier = 65 mA, VGS Peaking = - 5.1 V.

² Test condition: Input signal Pulsed CW, Pulse width = 100 µs, Duty cycle = 10 %.

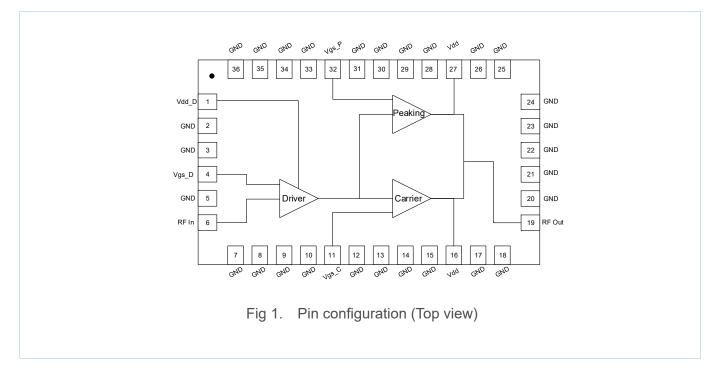
³ Test condition: Single-Carrier W-CDMA, IQ magnitude clipping, Input signal PAR = 7.5 dB @ 0.01 % probability on CCDF. ACPR measured in 3.84 MHz channel bandwidth @ ±5 MHz offset.

1.2 Features and benefits

- > High efficiency, high gain
- > Internally matched for broadband performance
- > Designed for Digital Pre-Distortion error correction systems
- > Optimized for Doherty applications

1.3 Applications

 RF power amplifier for base stations and multi carrier applications in the 4700 MHz to 5000 MHz frequency range


1.4 Lead-free and RoHS compliant

Pb RoHS

2. Pinning information

3. Ordering information

Table 2. Ordering information

Part number	Marking	Package type	Packaging information			
			Tray: Suffix = 20 units			
DXG2MH50A-50N	1.0404		Tape and Reel:			
	LS12A	LGA 6×10mm Suffix = 100 units; 44 mm 1	Suffix = 100 units; 44 mm Tape width;			
			13-inch Reel			

4. Maximum ratings

Table 3. Maximum ratings

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	VDSS	150	V
Gate-Source Voltage	V_{GS}	-10 ~ +2	V
Operating Voltage	Vds	0 ~ +55	V
Maximum Forward Gate Current	I _{GMAX}	7.7	mA
Storage Temperature Range	Tstg	- 65 ~ +150	°C
Operating Junction Temperature	TJ	225	°C
Absolute Maximum Channel Temperature ¹	Тмах	275	°C

¹ Functional operation above 225°C has not been characterized and is not implied. Operation at T_{MAX} (275°C) reduces median time to failure by an order of magnitude; Operation beyond T_{MAX} could cause permanent damage.

5. Thermal characteristics

Table 4. Thermal characteristics

Parameter	Symbol	Value	Unit
Side A, Carrier			
Thermal Resistance at Average Power by Infrared Measurement,			
Active Die Surface-to-Case	R _{thjc} (IR)	8.2	°C/W
$T_{\text{base-plate}} = 85^{\circ}\text{C}, P_{\text{D}} = 8.8 \text{ W}$			
Thermal Resistance at Average Power by Finite Element Analysis,			
Junction-to-Case	Rthjc(FEA)	11.0	°C/W
$T_{\text{base-plate}} = 85^{\circ}\text{C}, P_{\text{D}} = 8.8 \text{ W}$			

6. ESD protection characteristics

Table 5. ESD protection characteristics

Test Methodology	Class
Human Body Model (per JS-001-2012)	1A (> 250 V)
Charged Device Model (per JESD22-C101F)	C2 (> 500 V)

7. Moisture sensitivity level

Table 6. Moisture sensitivity level

Test Methodology	Class
Moisture Sensitivity Level (per J-STD-020)	Level 1

8. Electrical characteristics (TA = 25°C unless otherwise noted)

Table 7. DC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Side A, Carrier					
Drain-Source Leakage Current (V_{GS} = -10 V, V_{DS} = 150 V)	I _{DSS}	-	-	2.5	mA
Drain-Source Breakdown Voltage (V_{GS} = -10 V, I _D = 2.5 mA)	V _{(BR)DSS}	150	-	-	V
Gate Threshold Voltage (V _{DS} = 48 V, I _D = 2.5 mA)	$V_{\text{GS(th)}}$	-4.0	-3.2	-1.0	V
Side B, Peaking					
Drain-Source Leakage Current	IDSS	-	-	4.2	mA

dynax

(V _{GS} = -10 V, V _{DS} = 150 V)						
Drain-Source Breakdown Voltage		150			V	
(V _{GS} = -10 V, I _D = 4.2 mA)	V _(BR) dss	150	-	-	v	
Gate Threshold Voltage	\/	4.0	2.0	1.0	V	
(V _{DS} = 48 V, I _D = 4.2 mA)	V _{GS(th)}	-4.0	-3.2	-1.0	V	
Side C, Driver						
Drain-Source Leakage Current	1			1.0	μ	
(V _{GS} = -10 V, V _{DS} = 150 V)	IDSS	-	-	1.0	mA	
Drain-Source Breakdown Voltage	\/	150			V	
(V _{GS} = -10 V, I _D = 1.0 mA)	$V_{(BR)DSS}$	150	-	-	V	
Gate Threshold Voltage	N	4.0	2.0	4.0	V	
(V _{DS} = 48 V, I _D = 1.0 mA)	$V_{GS(th)}$	-4.0	-3.2	-1.0	V	
Gate Quiescent Voltage	M		2.0		V	
(V _{DD} = 48 V, I _D = 25 mA)	$V_{\text{GS}(\text{Q})}$	-	-3.0	-	V	
				1		

Table 8. RF characteristics (Typical Doherty performance – 5000 MHz)¹

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Output Power ²	Psat	45.4	46.4	-	dBm
Drain Efficiency ³	ηD	26.5	33.5	-	%
Power Gain ³	Gp	21.4	24.6	27.8	dB

¹ Typical Doherty performance in Dynax DXG2MH50A-50N production test fixture, test condition: V_{DS} = 48 V, IDQ_A = 60 mA, IDQ_C = 20 mA, VGS_B = -2.9 V + V_{GSQ} @10 mA.

 2 Test condition: Pulsed CW, Pulse width = 100 $\mu s,$ Duty cycle = 10 %.

³ Test condition: P_{avg} = 39.0 dBm, Single-Carrier W-CDMA, IQ magnitude clipping, Input signal PAR = 7.5 dB @ 0.01 % probability on CCDF.

Table 9. Load mismatch

Parameter	Result
VSWR 10:1 at V _{DS} = 48 V,	
50 W Pulsed CW output power,	No device damage
Pulse width = 100 μ s, Duty cycle = 10%.	

9. Test information

9.1 Typical application circuit

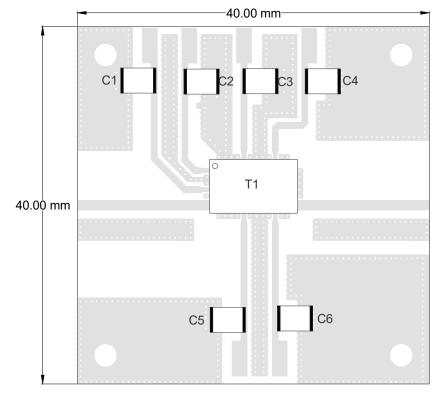


Fig 2. Component layout

Table 10. List of components

S/N	Туре	Designator	Designator Description		Vendor
1	Сар	C1,C2,C3,C4,C5,C6	GRM31CZ72A475KE	4.7 uF	Murata
2	Transistor	T1	DXG2MH50A-50N	/	Dynax
3	PCB		Rogers 4350B	20 mil	Rogers

9.2 Graphic data

9.2.1 Pulsed CW

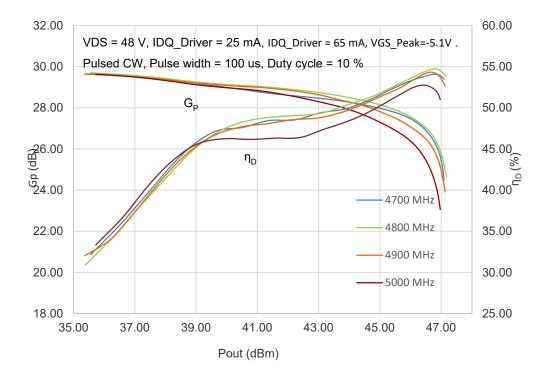


Fig 3. Power gain, Drain efficiency vs. Pulse output power

10. Median lifetime

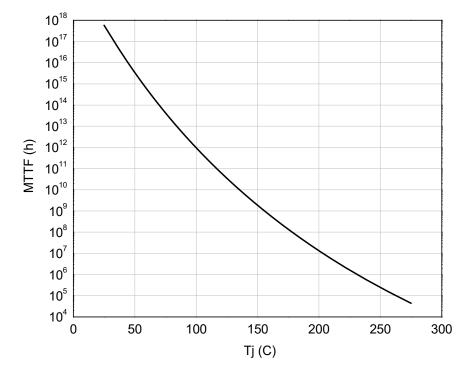
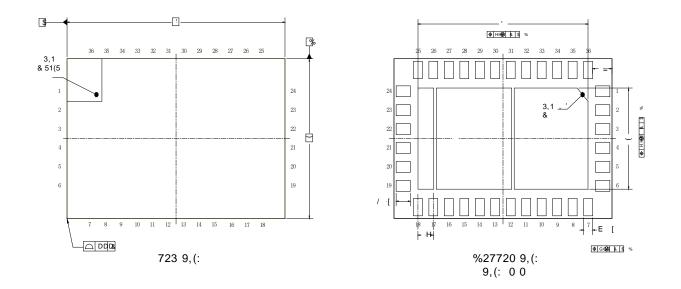
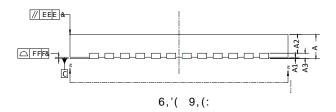




Fig 4. Median lifetime vs. channel temperature

11. Package outline

DESCRIPTION		DIM		MILLIMETER	TER		
DESCRIPTION		DIM	MIN	NOM	MAX		
TOTAL THICKNESS		А	0.85	0.90	0.95		
STAND OFF		A1	0.00		0.05		
MOLD THICKNESS		A2	0.525	0.60	0.675		
L/F THICKNESS		A3		0.30 REF			
BODY SIZE	X		9.90	10.00	10.10		
BODT SIZE	Y	E	5.90	6.00	6.10		
LEAD PITCH		е	0.71 BSC				
LEAD WIDTH		b	0.36	0.41	0.46		
LEAD LENGTH		L	0.60	0.65	0.70		
EP SIZE	Х	D1	7.60	7.80	8.00		
EF SIZE	Y	E1	3.70	3.80	3.90		
LEAD EDGE TO PKG EDGE		Z	0.89 BSC				
Tolerance of form and position							
PACKAGE EDGE TOLER	ANCE	aaa	0.1				
MOLD FLATNESS		bbb		0.1			

Table 11. Package dimensions

(Continued)

DESCRIPTION	DIM	MILLIMETER		
		MIN	NOM	МАХ
LEAD COPLANARITY	CCC		0.08	
LEAD POSITION OFFSET	ddd		0.1	
EXPOSED PAD OFFSET	eee		0.1	

12. Abbreviations

Table 12. Abbreviations		
Acronym	Description	
CW	Continuous Waveform	
ESD	Electro-Static Discharge	
GaN	Gallium Nitride	
HEMT	High Electron Mobility Transistor	
MTTF	Median Time To Failure	
VSWR	Voltage Standing Wave Ratio	

13. Legal information

13.1 Datasheet status

Document status	Product status	Definition
Objective [short] datasheet	Engineering sample	This document contains data from the objective specification for product development.
Preliminary [short] datasheet	Engineering sample	This document contains data from the preliminary specification.
Production [short] datasheet	Mass product	This document contains the product specification.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Dynax does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short datasheet — A short datasheet is an extract from a full datasheet with the same product type number(s) and title. A short datasheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full datasheet, which is available on request via the local Dynax sales office. In case of any inconsistency or conflict with the short datasheet, the full datasheet shall

dynax

prevail.

Product specification — The information and data provided in a Product datasheet shall define the specification of the product as agreed between Dynax and its customer, unless Dynax and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Dynax product is deemed to offer functions and qualities beyond those described in the Product datasheet.

13.3 Disclaimers

Information in this document is believed to be accurate and reliable. However Dynax does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Dynax takes no responsibility for the content in this document if provided by an information source outside of Dynax.

All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Dynax products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. Dynax makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Dynax products, and Dynax accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Dynax product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Dynax products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safetycritical systems or equipment, nor in applications where failure or malfunction of a Dynax product can reasonably be expected to result in personal injury, death or severe property or environmental damage.

Unless this datasheet expressly states that this specific Dynax product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements.

This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

14. Contact information

For more information, please visit: <u>http://www.dynax-semi.com</u>